Lesson 15: Boolean Representation of Ladder Diagrams

ET 438B Sequential Control and Data Acquisition Department of Technology

Lesson 15_et438b.pptx

Learning Objectives

After this presentation you will be able to:

- Realize logic functions as ladder diagram rungs
- > Follow the logic of a multi-rung ladder diagram
- Represent ladder rungs as Boolean gates
- Design combinational sequential controllers using Boolean equations

Lesson 15_et438b.pptx

<section-header><text><list-item><list-item><list-item><list-item><list-item><text>

Ladder Logic Memory Elements

Mechanically latched relay - maintains state even when power removed. Has two coils (operate, reset)

Review of Logic Gates and Boolean Algebra						
Roolean Ac			NOT			
Boolean Operators	$\begin{array}{c c} A \\ B \\ \hline & X \\ & X = A \cdot B \\ \hline & A \\ \hline & B \\ \hline & X \\ \hline & 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c c} A \\ B \\ B \\ \hline \end{array} \\ X = A + B \\ \hline A \\ B \\ \hline 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$A \longrightarrow X$ $x = \overline{A}$ $A \mid X$ $0 \mid 1$ $1 \mid 0$			
EOR=XOR	NAND A B	NOR A	EOR BX			
Alternate Implementation $X = A\overline{B} + \overline{A}B$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} X = A \oplus B & \\ \hline A & B & X \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$			
	Lesson 15_et438b.	pptx	20			

Review of Logic Gates and Boolean Algebra					
Axioms of Boolean Algebra					
Idempotent	Associative Distribut		ive		
$A + A = A$ $A \cdot A = A$	$(A+B)+C = A + (A \cdot B) \cdot C = A (B \cdot A)$	B+C) A+(B·C C) A(B+C	C)=(A+B)(A+C) C)=(A⋅B)+(A⋅C)		
Identity	Complement	DeMorgan's Theorem	Absorption		
A + 0 = A	$A + \overline{A} = 1$	$\overline{A+B}$) = $\overline{A} \cdot \overline{B}$	$A + \overline{A} \cdot B = A + B$		
A + 1 = 1	$A \cdot \overline{A} = 0$	$\overline{A \cdot B}$) = $\overline{A} + \overline{B}$	$A + A \cdot B = A$		
$A \cdot 0 = 0$	$\overline{\overline{A}}) = A$		Order of Operations		
$A \cdot 1 = A$	1 = 0		1. NOT 2. AND 3. OR		
Lesson 15_et438b.pptx					

Logic Design

- 1.) Obtain description of process
- 2.) Define control action
- 3.) Define Inputs and Outputs
- 4.) Develop Truth Table or Boolean Equation of Process

Process control description

A heating oven with two bays can heat one ingot in each bay. When the heater is on it provides enough heat for two ingots. If only one ingot is present, the oven may overheat so a fan is used to cool the oven when it exceeds a set temperature.

Control Action

When only one ingot is in the oven and the temperature exceeds the setpoint, turn on the fan

esson 15_et438b.pptx

