Lesson 15: Boolean Representation of Ladder Diagrams

ET 438B Sequential Control and Data Acquisition Department of Technology

Learning Objectives

After this presentation you will be able to:
Realize logic functions as ladder diagram rungs
Follow the logic of a multi-rung ladder diagram
Represent ladder rungs as Boolean gates
Design combinational sequential controllers using Boolean equations

Ladder Diagram Example

A manual mixing operation is to be automated using sequential process control methods. The process composed of three steps:
a.) filling a tank to a predetermined level
b.) agitating the liquid for 30 minutes
c.) draining the tank for use in another part of process

Does the ladder logic schematic that follows perform this function correctly?

Combinational and Sequential Logic with Relays and Contacts

Let contact state represent a logical value

Implement AND gate

Combinational and Sequential
 Logic with Relays and Contacts

Conditions A AND B must be present to energize output C
Note: all contacts are considered instantaneous and not held unless modified

With electromechanical relays fan-in and fan-out limited by number of contacts in relays

More Logic Functions

OR Function

potential

A

grd

Either A OR B will cause coil C to be energized Contacts A, B represent conditions or states in the sequential process

More Logic Functions

NOT Function

Boolean Expression
$B=A$
 B

Contact of opposite state creates inversion

Constructing Other Logic Functions

Combine the AND function with the NOT function to get a NAND operation.

Rung 1 implements the AND function Rung 2 implements the NOT function

Any contact associated with coil D will change state like a NAND TTL gate.

Multiple Input AND/NAND

$$
A B C=E \text { and } A B C=E
$$

Can add a memory action to the above by including a feedback from the output coil to the inputs

Memory Action AND/NAND

Can add a memory action to the above by including a feedback from the output coil to the inputs

All Inputs Latched AND/NAND

The output can not change unless the circuit is de-energized.

Contact E in rung 2 is a feedback from the output that makes circuit ignore state changes of A, B and C after the condition A B C is detected.

Motor Control Example

Three-wire control- used for manual and automatic motor starting.

Ladder Logic Memory Elements

Mechanically latched relay - maintains state even when power removed. Has two coils (operate, reset)

Typical wiring

Typical Applications
Reversing Motor starters. Reclose Relay Cut-out

DFERATE
C민
FESET
CDIL
Inputs A and B set the output contacts E and reset then respectively. This give toggle action that "remembers" the last input state even when power is removed

Timer Sub-Circuits

Rung 1: when input A is energized timer TR-E starts

Schematic indicates that this is a on-delay timer. After defined interval TR-E in rung 2 opens and TR-E in rung 3 closes

Load 1 is deactivated after time delay
Load 2 is activated after time delay
Load 3 is instantaneously deactivated by TR-E

Form "C" Contact

Loads are toggled between a common point

Typical "Form C" contacts include both a NO and NC contact arrangement.

Used in some sensors for more flexibility

Contact A creates a remote control toggle switch

Designing Sequential Control Systems

Combinational Systems

- Use true tables, Boolean Algebra
- Multiple inputs and/or outputs
- Sum of Products or product of sums Boolean Implementations
- Reduce to minimum implementation

Sequential Systems

- Follow steps, transition from one step to another.
- Use state transition diagrams or tables with Boolean Algebra
- State Machine implemented in software or hardware
- Decisions made base on current condition of system and input information

Review of Logic Gates and Boolean Algebra
Boolean Variables False $=0 \quad$ True $=1$

Boolean
Operators

EOR=XOR
Alternate
Implementation
$X=A \bar{B}+\bar{A} B$

AND			OR			NOT		
$\stackrel{A}{\mathrm{~A}-\mathrm{O}}-\mathrm{x}$			$\frac{A}{B-D}-x$			$\mathrm{A}_{\rightarrow-\infty} \mathrm{x}$		
$X=A \cdot B$			$X=A+B$			$X=\bar{A}$		
	B	X		B	X	A		
0	0	0		0	0	0		
0	1	0		1	1	1		
	0	0		0	1			
	1	1		1	1			
NAND			NOR			EOR		
$\mathrm{A}-\mathrm{C}=\mathrm{x}$			$\frac{A}{B}=D \operatorname{lox}$			$\frac{A-D}{B-X}$		
$X=\overline{A \cdot B}$			$X=\overline{A+B}$			$X=A \oplus B$		
	B	X		B	X		B	X
0	0	1	0	0	1	0	0	0
0	1	1	0	1	0		1	1
1	0	1	1	0	0		0	1
	1	0		,	0	1	1	0

Review of Logic Gates and Boolean Algebra

Axioms of Boolean Algebra

Idempotent Associative Distributive
$A+A=A$
$A+B)+C=A+(B+C)$
$A+(B \cdot C)=(A+B)(A+C)$
$A \cdot A=A$
$A \cdot B) \cdot C=A(B \cdot C)$
$A(B+C)=(A \cdot B)+(A \cdot C)$
Identity Complement DeMorgan's Absorption Theorem
$A+0=A \quad A+\bar{A}=1 \quad \overline{A+B})=\bar{A} \cdot \bar{B} \quad A+\bar{A} \cdot B=A+B$
$A+1=1$
$\mathrm{A} \cdot \overline{\mathrm{A}}=0$
$\overline{A \cdot B}=\bar{A}+\bar{B} \quad A+A \cdot B=A$
$A \cdot 0=0$
$\overline{\bar{A}})=\mathrm{A}$
Order of Operations
$A \cdot 1=A$
$\overline{1}=0$

1. NOT
2. AND
3. OR

Review of Logic Gates and Boolean Algebra

Example: Simplify the following expression using the axioms of Boolean Algebra.

$$
\begin{aligned}
& X=(\overline{A+B \cdot C})+A(B+\bar{C}) \\
& X=(\overline{A)+(\bar{B} \cdot C})+A(B+\bar{C})
\end{aligned}
$$

Apply DeMorgans's Theorem to first term

$$
\begin{aligned}
& \bar{A}(\overline{B \cdot C})=(\overline{A)+(B \cdot C}) \\
& X=\bar{A}(\overline{B \cdot C})+A(B+\bar{C}) \\
& X=\bar{A}(\bar{B}+\bar{C})+A(B+\bar{C}) \\
& X=\bar{A} \cdot \bar{B}+\bar{A} \cdot \bar{C}+A \cdot B+A \cdot \bar{C} \\
& \text { Collect common terms and factor } \\
& \bar{C}(A+\bar{A})=A \cdot \bar{C}+\bar{A} \cdot \bar{C} \\
& \text { Lesson 15_et438b.pptx } \\
& 22
\end{aligned}
$$

Review of Logic Gates and Boolean Algebra

Example Continued

$$
\begin{gathered}
X=\bar{A} \cdot \bar{B}+A \cdot B+\bar{C}(A+\bar{A}) \\
A+\bar{A}=1 \\
X=\bar{A} \cdot \bar{B}+A \cdot B+\bar{C} \cdot 1 \\
\bar{C} \cdot 1=\bar{C} \\
X=\bar{A} \cdot \bar{B}+A \cdot B+\bar{C} \\
\text { Simplified Expression }
\end{gathered}
$$

Logic Design

1.) Obtain description of process
2.) Define control action
3.) Define Inputs and Outputs
4.) Develop Truth Table or Boolean Equation of Process

Process control description

A heating oven with two bays can heat one ingot in each bay. When the heater is on it provides enough heat for two ingots. If only one ingot is present, the oven may overheat so a fan is used to cool the oven when it exceeds a set temperature.

Control Action

When only one ingot is in the oven and the temperature exceeds the setpoint, turn on the fan

Logic Design

Define I/O variables Inputs: B1 = bayl ingot present B2 = bay2 ingot present T = temperature sensor

Create Truth Table
Output: F= fan start

\mathbf{T}	B2	B1	\mathbf{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

If there is no over temperature don't start the fan

Over temperature in empty oven: safety fan start
Start fan in lightly load ovens with over temp.
Over temperature in full oven: safety fan start

Logic Design

Select elements from truth table in SOP (sum-ofproducts) form then simplify.

T	B 2	B 1	F	$\mathrm{~F}=\mathrm{T} \cdot \overline{\mathrm{B} 1} \cdot \overline{\mathrm{~B} 2}+\mathrm{T} \cdot \mathrm{B} 1 \cdot \overline{\mathrm{~B} 2}+\mathrm{T} \cdot \overline{\mathrm{B} 1} \cdot \mathrm{~B} 2+\mathrm{T} \cdot \mathrm{B} 1 \cdot \mathrm{~B} 2$
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	$\mathrm{~F}=\mathrm{T} \cdot(\overline{\mathrm{B} 1} \cdot \overline{\mathrm{~B} 2}+\mathrm{B} 1 \cdot \overline{\mathrm{~B} 2}+\overline{\mathrm{B} 1} \cdot \mathrm{~B} 2+\mathrm{B} 1 \cdot \mathrm{~B} 2)$
1	1	1	1	$\mathrm{~F}=\mathrm{T} \cdot(\overline{\mathrm{B} 2} \cdot(\overline{\mathrm{~B} 1}+\mathrm{B} 1)+\mathrm{B} 2 \cdot \overline{(\mathrm{~B} 1}+\mathrm{B} 1))$
$\mathrm{F}=\mathrm{T} \cdot(\overline{\mathrm{B} 2}+\mathrm{B} 2)$				
$\mathrm{F}=\mathrm{T} \quad$Requires only Temp control				

Logic Design

$$
\mathrm{F}=\mathrm{T} \cdot \mathrm{~B} 1 \cdot \overline{\mathrm{~B} 2+\mathrm{T}} \cdot \overline{\mathrm{~B} 1} \cdot \mathrm{~B} 2
$$

Revised Truth Table

\mathbf{T}	$\mathbf{B 2}$	$\mathbf{B 1}$	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	$\mathbf{0}$
1	0	1	1
1	1	0	1
1	1	1	0

$$
\mathrm{F}=\mathrm{T}(\mathrm{~B} 1 \cdot \overline{\mathrm{~B} 2}+\overline{\mathrm{B} 1} \cdot \mathrm{~B} 2)
$$

Ladder Logic Representation

Simplified Forms of Functions

Avoid multiple complemented variables in ladder logic (No NAND, NOR)

NOR
$X=\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$

NAND/NOR can not be implemented effectively using software. (Programmable Logic Controllers)

End Lesson 15: Boolean Representation of Ladder Diagrams

ET 438B Sequential Control and Data Acquisition
Department of Technology

